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Abstract
Traditional Programming by Demonstration (PBD) systems pri-
marily automate tasks by recording and replaying operations on
Graphical User Interfaces (GUIs), without fully considering the
cognitive processes behind operations. This limits their ability to
generalize tasks with interdependent operations to new contexts
(e.g. collecting and summarizing introductions depending on different
search keywords from varied websites). We propose TaskMind, a sys-
tem that automatically identifies the semantics of operations, and
the cognitive dependencies between operations from demonstra-
tions, building a user-interpretable task graph. Users modify this
graph to define new task goals, and TaskMind executes the graph
to dynamically generalize new parameters for operations, with
the integration of Large Language Models (LLMs). We compared
TaskMind with a baseline end-to-end LLM which automates tasks
from demonstrations and natural language commands, without
task graph. In studies with 20 participants on both predefined and
customized tasks, TaskMind significantly outperforms the baseline
in both success rate and controllability.
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1 Introduction
Repetitive and routine tasks on GUIs, characterized by fixed pro-
cedures, can be highly time-consuming. Previous studies show
that a large proportion of GUI-based tasks across various domains
can be automated [1, 4, 39]. Our preliminary survey, conducted
with 81 participants from the local university community via a
questionnaire, revealed that approximately 38.8% of daily tasks in
work or study are automatable. Among the various task automation
techniques, Programming by Demonstration (PBD) stands out by
significantly lowering the barriers for users to create automation
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Figure 1: Using TaskMind to demonstrate and automate an example task (Task 16 in our dataset). In the demonstration
phase, the user interacts with the GUI to search for and summarize a keyword’s introduction. TaskMind models this task
by recovering 3 cognitive dependencies between operations, which are the implicit cognitive processes users undergo when
selecting parameters for operations. During automation, TaskMind executes the task graph to infer new parameters with the
guidance of cognitive dependencies, generalizing the demonstration to new goals and contexts (i.e. when the search keyword
and websites change).

programs [13, 29]. PBD systems enable users to manually demon-
strate the task process, which contains a sequence of operations
along with their parameters (i.e., the targets of operations, such
as the ‘Search’ button to click or the text ‘Kilimanjaro’ to input
in Figure 1). From the demonstration, the systems generate a task
program to automate for the same or similar task goals. PBD offers
an effective method for end-users without programming expertise
to create personalized and customized automation [13, 29, 45].

However, existing PBD tools [25, 29, 30, 42, 45, 57] mainly fo-
cused on recording and replaying sequence of operations, overlook-
ing the trajectory of intents that guide parameter selection, which
often involve cognitively “computing” the relationships between
prior parameters. These processes occur internally within users’
mind and are implicit in the observed GUI operations. We refer to
them as cognitive dependencies, which describe the cognitive
processes users undergo when selecting parameters depending on
prior operations. Cognitive dependencies are prevalent in various
tasks, for example, as illustrated in Figure 1, consider a task of
browsing and writing a brief introduction for a keyword. During
the demonstration, the user first searches for a keyword, then clicks
a search result with the cognitive dependency “find the search result
most relevant to the keyword”, which guides them to select the most
relevant Wikipedia link. Similarly, the user then selects a paragraph
from the page with “find the introductory paragraph of the key-
word”, and types a summary in the document with “summarize the
previously selected paragraph”. When the task goal (the keyword)
changes, subsequent parameters (the chosen search result, selected
paragraph, and final input summary) should also change, following
the same cognitive dependencies. Without understanding these de-
pendencies, PBD systems cannot adjust the subsequent parameters
when the initial keyword changes during automation, resulting in

failures to generalize the demonstrated task program to different
task goals and contexts.

To bridge this operation-cognition gap, we present TaskMind,
the first PBD system that uses the reconstruction and interactive
disambiguation of cognitive dependencies to model user intents
behind operations for the generalization of learned task programs.
TaskMind automatically recovers cognitive dependencies from user
demonstrations by analyzing the relationship between parameters
in operation sequence with the help of LLMs. These dependen-
cies are explicitly annotated in a task graph, which serves as the
automation program, with its dependencies used as prompts for
LLMs to infer new parameters for different task goals, enhancing
the system’s generalizability to new contexts for complex tasks
with inter-dependent parameters. TaskMind features an interactive
interface allowing users to check and modify the generated task
graphs with cognitive dependencies to correct errors and define
new task goals before starting the automation.

Our formative study identified several challenges in building an
abstract task graph from low-level GUI operations, including the
gap between raw operations and their semantics, and the diversity
of cognitive dependencies involved in GUI tasks. These findings led
to the design of TaskMind’s two new components for task analysis:
a UI extractor that transforms low-level GUI events into semanti-
cally rich operations, and a dependency extractor that leverages
LLMs to recognize cognitive dependencies. An operation-cognition
knowledge base was also derived from the formative study to pro-
vide abstract categorization of dependencies, supporting LLMs in
dependency extraction. Additionally, we introduce a self-evolving
mechanism which employs a LLM-driven reflection module run-
ning in the background to take user modifications as input and
update the knowledge base accordingly.



From Operation to Cognition: Automatic Modeling... CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Our simulation study showed TaskMind’s effectiveness in gener-
alizing new parameters with a task success rate (SR) of 79.5% and a
step SR of 93.9% before user modifications, compared to 33.3% task
SR and 83.2% step SR for TaskMindwithout explicitly annotated cog-
nitive dependencies as our baseline. Additional simulation studies
emphasized the importance of the operation-cognition knowledge
base and the reflection module. In our within-subjects user study
involving 20 participants on both pre-defined and customized tasks,
TaskMind significantly outperformed the baseline in both effec-
tiveness and controllability. We discussed the effort-controllability
trade-off, where using natural language (NL) instructions for the
baseline is more intuitive but harder to specify intents, while modi-
fying task graphs requires more logical thinking but offers better
control through precise edits.

In conclusion, our core contributions are:

1. The design of a task graph with cognitive dependencies to
enhance PBD generalizability by modeling implicit cognitive
processes underlying operation sequences.

2. TaskMind, a novel PBD system that automatically recon-
structs cognitive dependencies from demonstrations, sup-
ported by an operation-cognition knowledge base with a
self-evolving mechanism.

3. A simulation study to assess the effectiveness of TaskMind
in automation success rate compared to a version without
cognitive dependencies.

4. A user study comparing the usability of modification
through task graph versus NL instructions, highlighting the
balance between effort and controllability in collaboration.

2 Related Work
2.1 Task Automation
Task automation employs scripts or tools to automate repetitive
and tedious tasks through GUI on behalf of users, reducing manual
labor and enhancing human productivity. The automation scripts
typically originate from four sources: machine language program-
ming such as Shell or Python, visual programming with drag-and-
drop interfaces [43, 53, 57], NL instructions, and user demonstra-
tion, each requiring different levels of user expertise. PBD stands
out as a method where the system learns tasks by observing user
demonstration on the UI and can generalize the process, offers
greater adaptability for personalized tasks and intuitiveness for
non-programmers [3, 8, 13, 22, 26, 27, 29, 30, 32, 33, 35, 42, 47, 52].
Recently, the advent of natural language processing and pre-trained
LLMs has led to the development of technologies capable of convert-
ing NL instructions into GUI operations [11, 14, 20, 24, 34, 46, 61],
lowering the barrier for task automation.

Most existing automation tools focus on mobile platforms
[29, 30, 33, 46], and web automation for specific use cases such
as data collection and form filling [7, 10, 45]. Desktop-based sys-
tems are limited to single applications [27], or struggle with com-
plex tasks that involve intricate intentions [21, 22]. TaskMind is a
PBD-based automation tool designed for personalized, repetitive,
or routine tasks. It incorporates LLMs to better understand user
demonstrations with complex cognitive processes, offering a more
flexible PBD solution.

2.2 GUI Understanding
Understanding GUIs is the foundation of PBD, focusing on inter-
preting task goals and automating operations intelligently. Previous
research [50, 55, 58] used accessibility data and CV techniques to
comprehend UI elements on mobile devices, while others [3, 37, 57]
recorded UI elements on desktop platforms. Semantic vectors have
also been employed to interpret UIs and elements [2, 15, 31]. How-
ever, these approaches concentrated on the basic information of UI
elements, overlooking contextual data. A recent method [54] lever-
ages LLMs to understand contextual information within mobile UIs,
but this approach struggles with the complexity of PC interfaces
and is time-consuming for automating operation sequences. Task-
Mind enhances the semantics of computer elements by collecting
surrounding UI information. Moreover, TaskMind can identify and
extract list structures from the interface, recognizing iterative tasks
from a single demonstration, which is an improvement over prior
works [7, 36] that focused mainly on web and specific tasks.

2.3 Task Modeling for Generalization in PBD
and Integration of LLMs

The generalization of task scripts is a major challenge for PBD[13,
29, 35]. Traditional systems, which primarily rely on simple record
and replay mechanisms [3, 26, 27, 47, 52], are limited in their abil-
ity to adapt recorded scripts to new, varying contexts. In contrast,
abstractly modeling operations and task intentions from demon-
strated sequences offers a viable solution for generalizing tasks.
Existing task modeling methods can be categorized into three main
approaches: (1)Parameter extraction, where systems identify gen-
eralizable parameters by matching voice commands with operation
sequences [29, 33, 42], recognizing looping targets for repetitive
tasks [21, 22], or specifying semantic filters for data scraping tasks
[44]. (2) Description of individual operations, as seen in AP-
PINITE [30] and PUMICE [32], which learn data descriptions of
operations and task conditions from user manual input. (3) Path
Modeling, like KITE [33], which constructs a task model from mul-
tiple demonstrations to cover all potential execution paths of a task.
However, these methods typically require additional user input to
clarify intentions, such as voice commands [29, 42], manual con-
figurations of data descriptions[30], or follow-up questions[22]. In
addition, they simply focus on generalizing independent operations.
Therefore, more interactions are required when tasks involve mul-
tiple generalizable parameters with dependencies between them,
making the creation of generalizable automation scripts more effort-
intensive even than manually completing them.

Large ActionModels (LAMs) leverage pre-trained LLMs or LVMs
(large vision models) to generate action sequences from NL instruc-
tions [11, 14, 20, 24, 61]. They model task automation as a problem
of predicting the next action based on instructions and current con-
texts, with their general operational knowledge embedded in the
foundation models. While LAMs are not explicitly used in PBD and
lack support for personalized tasks, they demonstrate the potential
for using LLMs to interpret and generalize user operations. Our
approach, TaskMind, extends traditional PBD by integrating LLMs
to improve generalization. We use a task graph with cognitive de-
pendencies to specify cognitive dependencies between operation
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parameters, which LLMs automatically extracted from user demon-
strations. During automation, these dependencies guide the use
of LLM intelligence to generate parameters in new contexts. By
leveraging LLMs, TaskMind enhances the traditional symbolic PBD
framework, making it effective for tasks with multiple interdepen-
dent generalizable parameters.

2.4 Cognitive Processes in GUI Tasks
Cognitive dependency, a concept we introduce, describes the cog-
nitive process user undergo when performing GUI tasks. In this
process, parameters from prior operations are used to inform sub-
sequent ones, such as summarizing previously selected text into a
sentence input in the next step. Existing research on human cog-
nitive processes, primarily in psychology and education, includes
Bloom’s Taxonomy [5], which categorized human cognitive skills
into six levels. Marzano & Kendall’s Framework[38] further im-
proved this taxonomy. Multiple Intelligences Theory [6] modeled
the cognition when humans perform information processing. Ad-
ditionally, some studies [51] explored cognitive dependencies in
language from a cognitive linguistic perspective. Jerry A. Fodor’s
work [17] advocates for an atomistic view of concepts, emphasiz-
ing simple, fundamental relationships between the mind and the
world. Moreover, Fodor [16] highlights that thought is intrinsically
ordered, operating through systematic, sequential, and rule-based
patterns similar to a language. TaskMind transplants cognitive
theories into the domain of GUI tasks, introduces an operation-
cognition knowledge base concentrating on the cognitive-driven
relationships between operations. With the help of the knowledge
base, it recovers and models human cognitive dependencies implicit
in operation sequences, structuring them into the task graph. This
feature allows TaskMind to mimic human thinking by adapting
cognitive dependencies to infer new parameters in new contexts,
enhancing the generalization capability of PBD.

3 Formative Study
To better understand the gap between system-observed operations
and users’ actual intentions, we conducted a formative study fo-
cused on collecting real-world examples of repetitive and routine
tasks encountered by users during computer usage. We constructed
a dataset from the collected data, and the several challenges revealed
by the analysis lead to the design of our task graph.

3.1 Procedure
Our study involved 21 participants aged 19-37 (𝜇=29.0, 𝜎=6.6), in-
cluding 8 academic researchers, 7 undergraduates from various
majors, 4 corporate or government officeworkers, and 2 software de-
velopers. Participants installed our data collection software, which
recorded their screenshots, keyboard and mouse activities using
Windows hooks [40] and IUIAutomation APIs [41]. Participants
were instructed to record their computer usage as usual throughout
a week, with the flexibility to activate or deactivate the recording
software at their discretion. They were informed that the goal of
the study was to observe their daily activities in order to identify
tasks suitable for automation. Additionally, they were briefed about
the potential privacy implications and provided informed consent.

Participants were compensated at a rate of $5 per hour for record-
ing1. After the week of recording, participants engaged in informal
interviews, during which they described any repetitive and tedious
tasks they experienced in their computer use2.

Consequently, only 3 participants were comfortable recording
one hour per day throughout the entire week, mostly focusing on
continuous tasks such as writing a paper. In contrast, 12 partici-
pants, due to privacy concerns, recorded only specific tasks they
considered relevant for automation, resulting in shorter sessions
about one hour per participant, involving more targeted workflows
such as a secretary’s work of filling out web forms. This variation in
recording behavior contributed to a total of 51.3 hours of recorded
data.

For data analysis, two experts with deep understanding of cogni-
tive dependencies reviewed the recorded data along with the inter-
view results. The review process is as follows: First, they examined
the recorded videos with mouse and keyboard events, identified
sequences of operations and segmented them into distinct tasks.
Second, with insights from informal interviews, they identified
tasks suitable for automation based on three shared criteria: a) a
clear goal; b) a fixed sequence of operations; c) a repetitive, tedious
nature. Third, they annotated the cognitive dependencies in these
tasks, and employed the open coding method[18] to summarize the
types of dependencies. Each expert individually analyzed all 51.3
hours of recorded data, then compared and merged their results
to reach a consensus. By considering participants’ interview re-
sults, referencing shared criteria, and merging opinions of different
experts, biases from individual interpretations were minimized.

3.2 Findings
From a total of 51.3 hours of recordings, we identified 170 distinct
user tasks, accounting for 96.8% of all the recording time. Among
them, we selected 112 tasks that were suitable for automation,
making up 65.9% of all the distinct tasks, and 59.1% of the total
recording time. Tasks requiring extensive user creativity or lacking
a clear goal, such as writing travel plans, replying to messages and
browsing websites, were excluded. The proportion of automation
tasks was higher than the 38.8% reported in the preliminary study
in the introduction, likely due to participants’ selective recording of
tasks they considered relevant for automation. Finally, we grouped
the tasks with similar procedures or goals into 39 task groups.
For each group, we selected a representative task as an exemplar,
constructing a dataset with 39 tasks in total (detailed in Appendix
E)3. Among them, 10 tasks were related to student learning, 9 to
academic research, 9 to clerical data processing, 6 to personal file
management, and 5 to software development or testing.

The repetitive or routine tasks featured several iterations of the
same operation path. To minimize the demonstration costs while
achieve effective generalization, our design goal was to model the
cognitive dependencies into a task graph from a single iteration of
user demonstration. Our analysis revealed several challenges in re-
constructing cognitive dependencies, as explained in the following
sections.
1The compensation was consistent with the average earning of workers in the com-
munity where the study took place.
2The study protocol was reviewed and approved by the university ethics review board.
3https://github.com/Evennaire/TaskMind

https://github.com/Evennaire/TaskMind
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Table 1: Operation-cognition knowledge base containing 5main categorieswith proportion in the dataset, and their subcategories
with definitions and examples of NL descriptions.

Main Category Subcategory Definition Examples
Information Recall (34.0%) Repeat Select or input something based on prior same or similar information Input the same text

Select the element with similar text
Format Text Changing the format, structure, or presentation while keep content structure previous data into specific format

Replace suffix "xlsx" by "csv"
Polish Text Enhancing the quality or Refining the style of text Use a more formal tone

Eradicate ambiguous expressions
Information Comprehension (28.3%) Summarize Understanding the information and give a summary Summarize the keywords

Summarize into one sentence
Extract Information Understanding existing information and extract specific data Extract student id from

Information Creation (9.4%) Generate Text Generating newly written content Write a short essay based on the keyword
Write an application for the post

Logical Reasoning (13.2%) Calculate Performing mathematical calculations based on existing data add two numbers
Evaluation Analyzing data to produce a result, comparison, or categorization compare two strings and give the result

categorizing data based on certain criteria
Contextual Selection (15.1%) Match Element Identifying elements based on current context Select item with the lowest price

Find the search result most related to
Match Text Identifying text based on current context Select the movie introduction on the webpage

3.2.1 Identifying iterative tasks from single demonstration.
Our analysis revealed two types of tasks: (1) Normal Tasks with
a linear structure users may perform periodically. (2) Iterative
Tasks with a recurrent structure, where users repeatedly perform
the same operations on a list of objects. In our dataset of 39 tasks,
23.1% (9 tasks) were identified as normal, while 76.9% (30 tasks)
were iterative. In comparison, in all recorded distinct tasks during
the study, normal tasks accounted for 52.9% and iterative tasks
accounted for 47.1%, with a higher proportion of normal tasks such
as replying to messages. A key feature of iterative tasks is that at
least one operation involves an element parameter within a list
on the GUI, with subsequent iterations using other elements in
the list as new parameters. To identify the task type from a single
demonstration, it is crucial to recognize list structures on the UI.

3.2.2 Enriching GUI operation semantics through contex-
tual information. We identified a significant gap between raw
GUI events and the semantics of operations. For instance, an input
field on a webpage may not indicate its intended use due to insuffi-
cient element labels. GUI structure data provides contextual clues
about surrounding elements like adjacent text labels, clarifying the
purpose of user interactions with them. Integrating these supple-
mentary data with UI analysis techniques is crucial for accurate
inference of the semantics behind individual operations.

3.2.3 Understandingmultiple sources of intent in parameter
selection. For each operation, we explored the decision-making
process involved in the selection of parameter, i.e., why users inter-
act with specific elements or input certain text. Based on the source
of intent, we identified several types of operations:

(1) Fixed-Parameter Operations: Operations where parameters
remain constant across different contexts. In the example
of Figure 1, the search button to click and the MS Word
window to switch are fixed, regardless of the keyword.

(2) Independent Variable-Parameter Operations: Operations
where parameters are directly influenced by the user’s direct
intent, which are also essential in determining the task goal.

For example, in Figure 1, the keyword to search is a user-
specified parameter. In iterative tasks, such parameters may
vary across iterations and are determined by the iterative
element list as mentioned in 3.2.1, and we further label them
as Iterative.

(3) Dependent Variable-Parameter Operations: Operations
where parameters are influenced by prior operations and the
user’s cognitive process. For instance, in Figure 1, the final
summary depends on the selected paragraph. Each depen-
dent operation involves a cognitive dependency, linking it
to prior operations.

3.2.4 Recognizing diverse and task-specific cognitive de-
pendencies. We categorized the cognitive dependencies of each
dependent operations into distinct types, based on the cognitive
processes users undergo when interacting with the UI. Firstly, these
dependencies can be classified into two primary types:

• Structure Dependency, which involves understanding UI
structural relationships, such as identifying the same or ad-
jacent elements. These dependencies rely on rules with basic
element information, rather than semantic understanding.

• Semantic Dependency, which involves cognitive processes
that deal with semantic connections between text or ele-
ment parameters. Examples include summarizing text or
identifying elements with related text.

By adapting existing cognitive categorization methods, including
Bloom’s Taxonomy [5] and Marzano & Kendall’s framework [38] to
the realm of GUI operations, we divided all the semantic dependen-
cies into five main categories. These include Information Recall,
Information Comprehension, Information Creation, Logical
Reasoning, and Contextual Selection. The main categories are
designed to be both abstract and comprehensive, encompassing the
full range of semantic cognitive processes during GUI operations.
Furthermore, each main category contains several subcategories,
which are more specific breakdowns of a main category to repre-
sent a group of similar semantic dependencies. See Table 1 for a
complete list of all categories, which we term as an operation-
cognition knowledge base. Notably, our task automation scope
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Figure 2: An example of a task graph on the UI, and the interaction steps with TaskMind to automate tasks: (a) record and stop
demonstration, (b) allow TaskMind to analyze the task, (c) confirm or modify the task graph, (d) save and execute the task
graph, (e) invoke task graphs in the repository.

excludes cognitive processes like image/video understanding and
emotional reasoning, which are beyond automation needs.

We observed a diversity in semantic dependencies, many of
which are task-specific. For instance, in our dataset, Tasks 26 and
27 both involve writing based on slides but differ in goals: Task 26
focuses on personal reflections, while Task 27 involves drafting a
lecture. This highlights the necessity for a comprehensive knowl-
edge base to capture diverse semantic dependencies. However, there
is a trade-off between abstraction and specificity. The knowledge
base must be abstract enough to cover many tasks, yet specific
enough to address the unique cognitive dependencies within in-
dividual tasks. Thus, a mechanism is required to ensure that the
knowledge base can adapt and evolve continuously to meet varied
and specific demands of different tasks and users.

3.3 Task Graph Design
Based on the findings, we designed task graph to model cognitive
dependencies within GUI tasks. A task graph serves as a task pro-
gram, encompassing all the requisite information for automated
execution. It comprises three components: task type, operation se-
quence, and cognitive dependencies. An example task graph on the
UI is shown in Figure 2.

Task Type. Normal or iterative. See 3.2.1 for details.
Operation Sequences. Represented by nodes in the graph,

which are sequentially connected with edges, depicting the task
flow. Each operation has the following attributes:

• Index of Operation.
• Type of Operation: We defined 21 common computer opera-
tions along with their corresponding parameters, including
Click, TextInput, Copy, etc. See Appendix F.

• Parameters: The target of an operation, whichmainly include
text, and elements on the GUI. An element is represented
by a dictionary with fields including ID, Name, Type, Text,
Description (contextual information to enrich the semantics,
see 3.2.2) and List (the list in GUI where the element resides,
if present, see 3.2.1). Operations may have no parameters or
multiple parameters.

• Source of Parameter: Fixed, independent/iterative or depen-
dent, see 3.2.3 for details.

Cognitive Dependencies. Represented by special edges in the
graph. When operation B’s parameter depends on operation A, a
directed edge links A to B. Operation A serves as the input, and B as
the output of this dependency. A cognitive dependency may have
multiple inputs, but only one output. While a task might follow
various dependency paths, a task graph represents just one of these
paths. The text format for a semantic dependency is:

Output=Main_Category.Subcategory<Description>(Inputs).
“Main Category” and “Subcategory” come from 3.2.4, and “De-

scription” provides detailed description of the dependency in NL.

4 TaskMind
In this section, we first describe the user interaction scenario along
with the system workflow of TaskMind, then present the design
and implementation details of TaskMind, addressing challenges
identified in our formative study.

4.1 Usage Scenario
Anna, a university student studying Economics, often encounters
unfamiliar terms while reading textbooks and blogs. To build a per-
sonal glossary, she wants to search for and browse each term, then
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Figure 3: The overview of TaskMind system, which automatically models a task graph from the user demonstration.

write a brief summary. She decides to use TaskMind to automate
this repetitive process.

Demonstration, Modification & Automation. Anna begins
by demonstrating how to search the keyword “Kilimanjaro”. She
clicks the “Start Recording” button, performs her usual process, and
clicks “Stop Recording” (Fig. 2.a) and then “Analyze” (Fig. 2.b). Task-
Mind analyzes the recordings and generates a task graph. Anna can
check the graph, which visualizes operations and their cognitive
dependencies (edges with NL descriptions). She can modify the
dependencies by adding, deleting, or editing their descriptions and
the connected nodes (Fig. 2.c). Anna saves the graph to the task
repository without modifications (Fig. 2.d). Later, Anna encounters
another term “GPT-4”. She opens the saved task (Fig. 2.e), enters
“GPT-4” on the first node to define a new task goal, and clicks “Run”
to automate the task (Fig. 2.d). However, during automation, Task-
Mind gets stuck when trying to select the “GPT-4” introduction
on the page. Anna presses “Shift + Esc” to stop the process, and
re-check the task graph. She identifies an unrecognized dependency
for the operation of selecting the introduction, which causes the
failure, as TaskMind still tries to find the “Kilimanjaro” introduc-
tion on the “GPT-4” website. Anna adds a new dependency—“Find
the introduction of the keyword”—and clicks “Run” to restart the
automation (Fig. 2.c). With this adjustment, TaskMind successfully
completes the task. From then on, whenever Anna encounters an
unfamiliar term, she can simply input the new keyword, and have
TaskMind automatically add its summary in her notes.

Reflection & Evolution. Once the modification is made, the
reflection module analyzes it in the background, learns that “ex-
tracting specific information” is a type of cognitive dependency, and
incorporates this knowledge into the initial operation-cognition

knowledge base which supports dependency extraction. Next time
when Anna creates new tasks, such as collecting abstracts of pa-
pers, TaskMind can more accurately identify the similar cognitive
dependency “find the abstract of the paper” from the demonstrated
operations.

Iterative Task. Now Anna has a list of papers to read and sum-
marize but limited time. She creates an Excel file to track the papers
and demonstrates how to search for and summarize the abstract
for the first paper. TaskMind identifies the papers to iterate over,
displays them in the task graph along with cognitive dependencies.
Anna clicks “Run” after checking it, and TaskMind automatically
collects and summarizes abstracts for the remaining papers.

4.2 Design and Implementation
TaskMind is implemented as a Windows WinForm application.
During the user demonstration, it captures screen, keyboard, and
mouse event data, along with UI structures using Windows hooks,
accessibility APIs, and a Chrome extension for web page events
and DOM trees. When analyzing the task, two key modules, the UI
extractor and the dependency extractor, process the record data into
a task graph. In the automation phase, TaskMind executes the task
by simulating user keyboard and mouse inputs across Microsoft
Office (Excel, Word, PowerPoint), Chrome browser, and the system
file explorer. The system architecture is shown in Figure 3, and
main modules are detailed below.

4.2.1 UI Extractor. The UI Extractor is designed to enhance the
semantics of individual operations by extracting contextual informa-
tion, and meanwhile identify iterative tasks by recognizing iterative
UI elements.
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Firstly, the UI Extractor uses a rule-based method to transform
low-level GUI events into different types of operations along with
their targeted parameters (element or text) (see operation types
in Appendix F). The rules include predefined event patterns like
grouping keyboard inputs as TextInput or recognizing shortcuts.
Secondly, for each element parameter, the UI Extractor parses the
UI structure to retrieves fundamental attributes such as ID, type,
name, and text, with its additional information enriched through
two steps: (1) Semantics Augmentation: It extracts text from parent
and sibling elements in the UI structure as contextual information
to save into the ‘Description’ field, enriching the semantics of the
corresponding operation. For spreadsheet cells, it also captures
the headers and data in the same row. (2) Iteration Recognition:
It identifies the list on the screen where the element resides (if
exists), and save necessary information into the ‘List’ field. This is
implemented using a method inspired by Rousillon’s [7] work to
identify the Deepest Iterative Ancestor (DIA) of an target element
in the UI structure. The siblings of the DIA are regarded as iterative.
The ‘List’ field contains DIA’s parent and sibling elements, the index
within its siblings, and the path from the DIA to the target element.
This list information will be used to determine new iteration goals
during subsequent automation for iterative tasks, and also identify
structure dependency by discerning whether two elements are in
the same list.

Overall, these steps convert low-level GUI events into
semantically-enriched operations, aiding in the subsequent analyz-
ing of cognitive dependencies.

4.2.2 Dependency Extractor. The dependency extractor aims to
uncover cognitive dependencies implicit in operations. This module
consists of two sub-modules: structure dependency extractor
and semantic dependency extractor. The structure dependency
extractor utilizes augmented element information to determine
UI structural relationships between elements. E.g., by comparing
ID fields, it can deduce if there is an dependency to re-click the
same element as in prior operations, and by examining List field of
two elements, it determines their membership in the same list and
assesses the spatial interval between them.

The semantic dependency extractor leverages the capabilities of
LLMs for natural language semantic understanding. Initially, the
semantically-enriched operations, processed by the UI Extractor,
are organized into a structured textual format, as illustrated in Fig-
ure 3. Subsequently, this formatted data, in conjunction with the
operation-cognition knowledge base (also formatted for standard-
ization), was fed to an LLM. To refine the LLM’s output analysis,
we integrated several empirically derived rules into the prompt.
The temperature of the model was set to 0.2, and instructions such
as “Do not make up a MAINCATEGORY” are incorporated into
the prompt, mitigating the known issue of ‘hallucinating’ in LLMs,
where the model generates incorrect or irrelevant content [23]. We
used a one-shot example to direct the output format, employing a
chain of thought (COT) [56] approach to guide the model’s analysis
for each operation, which involves following steps: First, each op-
eration’s text is repeated to enhance the LLM’s memory retention;
Second, the LLM uses contextual operations to infer the user’s in-
tent; Third, operation parameters are assessed whether to be fixed
or variable in new automated contexts, based on user intent; Finally,

the LLM determines if parameters stem directly from user intent
or depend cognitively on prior operations. In cases of cognitive
dependency, it categorizes and recovers these dependencies with
NL descriptions. Figure 4 outlines the workflow of the semantic
dependency extractor. The entire prompt can be found in Appendix
A.

Moreover, operations directly derived from user intent are an-
alyzed using the List field of the element parameter (if present)
to ascertain whether this operation is iterative. Ultimately, a task
graph is generated, encapsulating the task type, sequence of oper-
ations with parameters, and all cognitive dependencies, saved in
JSON format.

Figure 4: Implementation of the semantic dependency ex-
tractor.

4.2.3 Modification & Execution. After demonstration and task anal-
ysis by two extractors, the generated task graph will be visualized
for users as an editable diagram (see Figure 2). Before starting au-
tomation, users can make necessary modifications to the graph to
clarify their intents and define new task goals. The modification
include adding, deleting or editing dependencies on their NL de-
scriptions or connected operations. For iterative tasks, users can run
the task graph immediately, since the remaining iterative elements
represent new goals. For normal tasks, users can manually define
new goals by entering text or selecting screen elements as new
parameters directly from their intents (e.g., a new search keyword).

During execution, operations are carried out sequentially. For
fixed operations, TaskMind uses a combination of recorded at-
tributes (ID, type, name and text) to anchor the target element.
For operations that cognitively depend on prior ones, TaskMind
uses the NL description of the dependency as a prompt for LLM to
inter new parameters in new contexts. To balance the generation
speed and execution accuracy, the system employs gpt-3.5 for text
parameter inference and gpt-4 for determining element parameters.
The latter involves extracting and filtering all clickable elements
on the current UI, and assigning indices for selection by the LLM.
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Figure 5: Implementation of the reflection module.

4.2.4 Reflection Module and Self-Evolution. The operation-
cognition knowledge base helps in extracting cognitive dependen-
cies. To achieve adaptability to diverse and task-specific needs, we
introduce a self-evolving mechanism that employs a reflection
module to digest user modifications using LLMs, enabling the
continuous updating of the knowledge base over time. In this
mechanism, when users modify a cognitive dependency, the
reflection module—running in the background—incorporates the
modification and the current knowledge base as inputs to the
LLM. The reflection process is also guided by the COT approach,
transforming modifications on specific dependencies into updates
to the abstract knowledge base. The output includes updating
existing subcategories, adding new ones, or making no changes.
These updates improve the knowledge base’s ability to recognize
similar cognitive dependencies more accurately when users create
new automation tasks in the future. Figure 5 outlines the workflow
of the reflection module, and the entire prompt can be found in
Appendix B.

5 Simulation Study
We conducted both a simulation study and a user study to evaluate
TaskMind. The simulation study focused on technical performances
of the task graph with cognitive dependencies, the semantic depen-
dency extractor with the knowledge base, and the reflection module
(see Figure 3). We compared TaskMind to the baseline version with-
out cognitive dependencies to evaluate the impact of explicitly
annotated dependencies on the success rate of generalizing automa-
tion programs learned from one demonstration to new task goals.
The user study focused on usability, examining how users interact
with the task graph and how they perceive the interaction, com-
pared to the same baseline as the simulation study, where users
only see a task graph without cognitive dependencies and use NL
instructions to define new task goals and clarify their intents. To-
gether, these two studies provided a comprehensive evaluation of

TaskMind on both the technical performance of its pipeline and the
usability of its interfaces.

The simulation study was conducted on the dataset derived
from our formative study. The dataset comprised 39 tasks, each
with a pre-annotated task graph containing cognitive dependencies,
encompassing a total of 74 structural and 53 semantic dependencies.
The average number of task steps (1 iteration) was 8.5, ranging from
3 to 19.

5.1 Evaluation of Automation Success Rate
5.1.1 Baseline and Implementation. To better understand the
role of task graph with an explicit notion of cognitive dependencies,
we used TaskMind without cognitive dependencies as our baseline.
This was implemented using an end-to-end LLM that took user
demonstration in the format after the UI Extractor (see Figure 3)
as the input, and directly generated parameters for subsequent
operations, without explicitly generating cognitive dependencies
in the task graph as an intermediate stage. The prompt includes
user-demonstrated operation sequence, already completed oper-
ations, task automation command in NL, and available elements
on the current page. We provided clear instructions and few-show
examples to facilitate the in-context learning, and utilized a chain-
of-thought mechanism by instructing the LLM to analyze the intent
of subsequent operations before generating answers to improve
the performance. We controlled the type of the next operation to
be the same as the demonstration in our baseline, leaving only
the parameter generation to LLM, since TaskMind only use cogni-
tive dependencies to generalize the parameters. For iterative tasks,
we also designated the target element of each iteration. Detailed
prompt can be found in Appendix C. We used gpt-4-1106 as the
foundation model for both methods.

5.1.2 Procedure. An expert, proficient in programming and with
a complete understanding of cognitive dependencies, demonstrated
these tasks on a Windows 10 system. Afterward, tasks were au-
tomated with 3 methods: TaskMind using the task graph without
any modification (TaskMind w/o Modification), TaskMind using
the task graph with expert modifications based on the ground truth
(TaskMind w/ Modification), and the baseline end-to-end LLM ap-
proach with expert-crafted automation commands in NL to describe
the task goal (Baseline LLM).

We followed the metrics in Mind2Web [14] to report the task
success rate (Task SR) and step success rate (Step SR) of parameter
generalization and automation. To concentrate on generalizable
operations that change parameters in different contexts, we cal-
culated the success rate specifically for steps requiring parameter
changes due to semantic dependencies (Semantic-Dependent Step
SR). Furthermore, we considered a single automation attempt of a
non-iterative task as one iteration, and reported the iteration suc-
cess rate (Iter SR). Since the output parameters—suitable elements
or NL text—can vary in practical settings, we conducted a man-
ual evaluation by experts. The primary measure was whether the
outcome of each step matched the task’s actual intended purpose.

5.1.3 Results and Analysis. For TaskMind, 31 out of 39 tasks
(79.5%) and 173 out of 204 iterations (84.3%) were successfully auto-
mated without any modifications to the task graph. After applying
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Table 2: Comparison of parameter generalization success rate (SR, %) across tasks, iterations, steps, and semantic-dependent
steps for 3 approaches: the end-to-end LLM approach (Baseline LLM), TaskMind without modification to the task graph
(TaskMind w/o M), and TaskMind with modification (TaskMind w/ M).

Task
SR

Iter
SR

Step
SR

Semantic-Dependent Step SR
Information

Recall
Information

Understanding
Information
Creation

Logical
Reasoning

Contextual
Selection All

Baseline LLM 33.3 60.8 83.0 73.3 51.7 93.8 53.7 43.8 63.1
TaskMind w/o M 79.0 84.3 98.3 97.4 89.7 87.5 95.1 65.6 90.9
TaskMind w/ M 92.3 92.6 99.5 98.3 100.0 100.0 97.6 90.6 97.7

Figure 6: When task complexity increased, the step success
rate of the baseline LLM declined while TaskMind main-
tained performance.

modifications, the success rate increased to 92.3% (36 out of 39 tasks)
and 92.6% (189 out of 204 iterations). In contrast, the baseline LLM
only achieved a 33.3% task success rate and a 60.8% iteration suc-
cess rate. When focusing on semantic-dependent steps, the baseline
LLM succeeded in only 63.1% of cases, whereas TaskMind achieved
90.9% success before modifications and 97.7% after modifications.
This indicates that an explicit notion of dependencies significantly
improves success rates and system reliability, particularly for steps
critical to the generalization of demonstrations.

The automation failures of the baseline LLM, especially in com-
parison to our method, can be summarized as follows:

(1) Tracking Long-horizon Tasks. The LLM struggled more
with complex tasks involving multiple operations, as shown
in Figure 6. Results suggested the LLM often loses track of
long-horizon tasks, a limitation also noted by [59], whereas
a task graph is better suited for such complex scenarios.
A typical example was Task 18 (T18), where the goal was
to first paste and title an introduction text, then insert an
image to create a slide. The baseline LLM failed to insert the
image after titling, and its pre-answer analysis showed it
mistakenly believed the task was complete.

(2) Linking Task Goal to Specific Operations. The baseline
LLM often struggled to determine which operation the goal

described in NL command should be applied to. As a re-
sult, the baseline LLM frequently failed to generate desired
elements or text even with a clear description in the NL com-
mand. In 19 out of 39 tasks, the LLM made errors like select-
ing incorrect elements (e.g., failing to select an introduction
paragraph in T16, selecting an irrelevant button instead of a
searching result in T1), outputting blank, placeholder text, or
repeating previous text (e.g., producing nothing when being
told to summarize a paper in T1, generating text “sentiment”
instead of the sentiment label in T35, repeating original text
when writing a speech in T27). This highlights the LLM’s
difficulty in fully understanding the relationship between
intent and operations. The task graph, however, clearly an-
notated dependencies for specific operation, making the task
goal easier to follow.

(3) Identifying Non-Generalizable Parameters. The base-
line LLM tended to change parameters that should remain
unchanged in new contexts. For instance, in T5, it incor-
rectly altered the date in each birthday card’s signature, and
in T11, it failed to switch between two windows during a
cross-application task. In contrast, the task graph explicitly
indicates that operations involving no dependencies should
have unchanged parameters, resulting in better performance
and saving time and costs by not relying on LLM intelligence
during the automation.

(4) Generalizing Structural Positions. The baseline LLM
had difficulty inferring positional relationships between ele-
ments, often selecting incorrect cells for input. For example,
in T22, it filled in the wrong rows when entering multiple
items in an Excel sheet, failing to keep the entries aligned.
TaskMind, with its structure dependency identified, avoided
these issues.

The failure of TaskMind without modification were mainly due
to incorrectly recognized semantic dependencies, which fell into
four main categories: (1) Unrecognized. E.g., it missed the contex-
tual selection “find the mp4 file from current page” in T11, leading
to failures of finding new mp4 files in new contexts. (2) Misinter-
preted. The user intent was misunderstood, e.g., “input the label for
the result” with only one dependent operation, instead of “compare
the proofreading result with the answer and output ‘recognized’ if
match, otherwise ‘unrecognized”’ with 2 dependent operations in
T6. (3) Overly-Specific. Dependencies were too specific to gener-
alize in new contexts, e.g., “find the cell with the year 2019” instead
of “find the cell with the same year” in T7. (4) Overly-Abstract.
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Table 3: Recall, precision and f1-score (%) in extracting semantic dependencies for TaskMindwith the simplest prompt, TaskMind
without knowledge base and the full version of TaskMind.

TaskMind Simple TaskMind w/o KB TaskMind Full
Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score

Info Recall 88.9 84.2 86.5 77.8 82.4 80.0 94.4 89.5 91.9
Info Comprehension 93.3 82.4 87.5 60.0 56.3 58.1 93.3 82.4 87.5
Info Creation 40.0 100.0 57.1 20.0 100.0 33.3 60.0 75.0 66.7
Logical Reasoning 57.1 57.1 57.1 71.4 83.3 76.9 71.4 83.3 76.9
Contextual Selection 50.0 11.1 18.2 62.5 45.5 52.6 75.0 60.0 66.7
All 75.5 49.4 59.7 64.2 66.7 65.4 84.9 80.4 82.6

Dependencies were not detailed enough to meet task goals, espe-
cially for personalized needs, e.g., “summarize the text” instead of
“write a presentation draft according to the text” in T27.

After modification, two major failures were resolved: First, task
execution became more flexible instead of a rigid processes. For
example, after correcting overly-specific ones, TaskMind could find
cells with different years for each iteration, rather than always
selecting the same year. Second, task execution better aligned with
user intent, eliminating unsatisfactory outputs. For example, cor-
recting overly-abstract dependencies allowed TaskMind to generate
a presentation draft better met the task requirements. Nevertheless,
even with modified dependencies, some failures persist in semantic-
dependent steps. Although the types of failed dependencies vary,
they all stem from the LLM’s difficulty in applying semantic rela-
tionships. For example, in T6, it misjudged whether proofreading
results matched the correct answer. In T19, when trying to find
a cell with text similar to “duration”, the LLM failed to select the
correct “person-hour” cell. These errors might be addressed by in-
troducing more sophisticated text generation or element grounding
methods. Despite these issues, the introduction of task graph and
cognitive dependencies still presents a significant advancement in
improving success rate of automating tasks.

5.2 Evaluation of Dependency Extraction
5.2.1 Procedure. We conducted an ablation study on the dataset
to validate the effectiveness of our operation-cognition knowledge
base in enhancing the accuracy of semantic dependency extrac-
tion. We compared the full version of TaskMind with (1) Task-
Mind without the operation-cognition knowledge base provided
in the prompt, (2) TaskMind with the simplest prompt, lacking
of operation-cognition knowledge base and the chain-of-thought
mechanism.

We used pre-annotated dependencies as the ground truth to
validate the accuracy of the identification of dependencies from a
operation sequence, and conducted a manual evaluation of their
NL descriptions by experts due to the variability in NL expressions.
Notably, although the knowledge base was derived from annotated
data, it provided only an abstract categorization of semantic depen-
dencies, with carefully designed examples included in the prompt
that do not overlap with specific dependencies in the dataset. This
ensured the knowledge base acted as a reference categorization,
rather than a direct data source. The comparison between TaskMind
with and without the knowledge base highlighted the contribution

of expert-condensed categorization to the LLM’s performance in
identifying and describing dependencies.

5.2.2 Results. For a total of 53 semantic dependencies, the full ver-
sion of TaskMind consistently outperforms the other two, achieving
the highest overall F1-score of 82.6%, with particularly strong per-
formance in Information Recall (91.9%), and Information Compre-
hension (87.5%), as shown in Table 3. The significant improvement
observed after incorporating the operation-cognition knowledge
base highlights its effectiveness in helping LLM understand task
goals and the user intent of each operation.

Notably, while the simplest version showed a slight improvement
in recall, it suffered a significant drop in precision, especially in
predicting Contextual Selection (11.1%). The model identified many
unnecessary contextual selection dependencies, such as “click the
‘SUM’ button” or “select the edit area”, mistakenly interpreting these
non-generalizable operations as requiring changes. This might be
due to the prompt’s simplification, which likely narrowed the LLM’s
focus, but also impaired its ability to understand and analyze the
goal of generalization. Additionally, verbosity bias [48] might have
contributed to the problem, leading to an excessive number of
irrelevant dependencies.

5.3 Evaluation of Reflection Module
We further evaluated the performance of the reflection module by
applying expert and non-experts modifications to the task graph
for improving the dependency extractor.

5.3.1 Procedure. Our analysis included 3 groups of tasks, each
comprising the original task where initial recognition of semantic
dependencies requires modifications, and 2 additional tasks with
similar semantic dependencies drawn from the formative study
data. In addition to an expert proficient in programming and task
graph modification, we also recruited 10 participants from a local
university (7 males, 3 females) as non-experts, none of whom had
prior PBD experience. They were first introduced about the concept
of task graph and cognitive dependency, and then given time to
modify the semantic dependencies in the original generated task
graph for each group, with their personal interpretations. Following
this, the reflection module integrated the modification and updated
the knowledge base. The evolved knowledge base after modification
of each individual was then applied to the 2 additional tasks in the
group to test its effectiveness in recognizing semantic dependencies.
Overall, this process led to 33 modifications of task graphs with
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Table 4: Examples of modifications from expert and non-expert users and corresponding updates to the initial knowledge base.

Task Original Dependency Provider Modification Added Sub-category

1 extract a part
of the text from

Expert select abstract of paper based on title select_based_on
User 1 find the abstract of extract_specific_information
User 2 show the abstract of this paper extract_specific_information

2 summarize the
text inside

Expert write summary and personal thoughts
of slide content

reflect_and_summarize

User 1 express personal feelings about the
slides

express_personal_feelings

User 2 summarize the content of the slide and
write down feelings

summarize_and_comment

3 none

Expert write the email content based on the
email subject

based_on_previous_input

User 1 write email on given subject write_text_based_on_given
_subject

User 2 write detailed content text for the title elaborate_text

66 test cases of evolution performance in total, encompassing 11
expert and non-expert participants. We reported the average recall,
precision and f1-score before and after each individual modification.

Table 5: Average recall, precision and f1-score (%) in extract-
ing semantic dependencies for 3 groups of tasks before and
after individual modifications.

Recall Precision F1-score
Before 85.7 58.3 69.4
After Expert Modifications 92.9 92.3 92.7
After Non-expert Modifications 90.3 91.6 90.9

5.3.2 Results. We noted a substantial improvement after the mod-
ification, as depicted in Table 5. The initial F1-score of 69.4% im-
proved to 92.7% after expert modifications, and also improved to
90.9% after non-expert modifications.

Table 4 displays the original inaccurate dependency descriptions,
examples of modifications from both expert and non-expert par-
ticipants, and the corresponding updates to the initial knowledge
base. The updates listed in the table were all proven effective in
enhancing the recognition of semantic dependencies for similar
tasks. Of the 33 updates, the majority (30) involved adding a new
sub-category to the knowledge base, with the remainder including
alterations to an existing main category or sub-category.

We further analyzed the behaviour of non-experts while modi-
fying dependencies, who had less knowledge about PBD and cogni-
tive dependency. There were 60 test cases of non-experts modifica-
tions in total, and 53 out of 60 test cases (88.3%) showed improved
recognition of semantic dependencies post-evolution, with 45 cases
(75.0%) achieving full accuracy of all dependencies. However, 15
cases exhibited inaccuracies or omissions in recognizing semantic
dependencies. Analysis of these cases revealed common issues: mis-
interpretation or bias in understanding intent (5 cases), omission
of details or use of ambiguous pronouns like “this” or “previous”

(7 cases), and lack of clarity in illustrating relationships with prior
operations (3 cases).

Despite these challenges, the study demonstrated the system’s
ability to integrate task-specific dependencies based on user modifi-
cations, even when the modification was overly specific or abstract.
For instance, a general modification like “write detailed content
for the title” was as effective as a more specific instruction such as
“write an email based on the email title.” Overall, the experimental
results indicate that with the reflection module, our system has the
ability to learn new cognitive processes from user feedback and
generalize them into abstract knowledge, enhancing TaskMind’s
capability to evolve and adapt to personalized needs.

6 User Study
To evaluate the effectiveness, efficiency, and usability of TaskMind,
we conducted a two-phase lab study with 20 participants. We used
the same baseline setup as in the first simulation study (Section
5.1.1), where TaskMind without cognitive dependencies was em-
ployed. In this setup, users could only view a task graph without
cognitive dependencies after demonstration, and therefore use NL
instructions to define new task goals and clarify their intents if nec-
essary (see Figure 7), which was the same objective of modifying
the task graph. The study aimed to answer the following research
questions:

RQ1. Is TaskMind more effective than the baseline approach?
RQ2. Is TaskMind more efficient than the baseline approach?
RQ3. Is TaskMind easier to interact with than the baseline ap-

proach?
RQ4. Is TaskMind capable of addressing users’ real needs?

In the first phase, we used a within-subject study to compare Task-
Mind with the baseline using a set of predefined tasks that varied
in difficulty levels and types of cognitive dependency. In the second
phase, participants were encouraged to complete personalized tasks
based on their actual needs and goals, using both TaskMind and
the baseline method.
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Table 6: 10 predefined tasks used in the user study that varied in 2 difficulty levels and 5 types of cognitive dependency.

Easy Difficult
Information Recall Rename image files (Task 21) Summarize annual total (Task 7)

Information Comprehension Introduce scenic spots (Task 18) Search for keywords (Task 16)

Information Creation Write an email (Task 23) Write a reflection (Task 26)

Logical Reasoning Fill out a web form (Task 15) Search for papers (Task 1)

Contextual Selection Calculate rectangle areas (Task 39) Calculate procurement expenses (Task 36)

Figure 7: Interacting with the baseline LLM to automate tasks
through natural language instruction, without task graph
and cognitive dependencies.

6.1 Participants
We recruited 20 participants (10 male and 10 female) aged 20-36
(𝜇=23.1, 𝜎=1.7), including 12 (P1-P12) university students and 8
(P13-P20) professionals. 5 participants had prior programming ex-
perience of more than 5 years, and also had used automation tools or
written automation scripts, while 10 participants had prior program-
ming experience of 1-5 years but had no automation experience,
and 5 participants had no programming or automation experience.
None of them had experience with visual programming tools.

6.2 Procedure
Each study started with an introduction and a consent solicita-
tion, followed by a tutorial. During the tutorial, participants were
given a document detailing necessary information and watched
instructional videos on each method. They were informed about
different interaction modes of the two methods. For TaskMind, par-
ticipants were required to review the task graph and could modify
it by adding, editing, or deleting dependencies before automating
the task. For the baseline method, participants needed to edit the
automation command in NL before execution, without examining
the task graph. If the automation failed, they could re-modify the
task graph or NL command and try the task again. The interaction
interfaces are shown in Figure 2 and Figure 7. Before concluding the
tutorial, they completed a simple task (T2) using both TaskMind
and baseline methods to prove their understanding of the basic
usage.

Following the tutorial, the formal study was divided into two
stages: In the first stage, each participant was randomly assigned 2
tasks from a set of 10 predefined tasks, with 1 difficult and 1 easy in
randomized order. They were asked to complete these 2 tasks using
both TaskMind and baseline methods, and then assess the success
based on their expectations. In the second stage, participants were
encouraged to use both methods to complete a task relevant to
their personal or professional contexts, utilizing their own files
and familiar websites. Each participant completed a total of 3 tasks
using both methods, resulting in 6 trials per participant and a total
of 120 trials across the study. Each predefined task was completed
4 times using each method. To mitigate the learning effect, orders
of methods and conditions in both phases were counterbalanced
across tasks and participants.

After each trial, participants filled out a survey to rate aspects of
workload and usability on a 7-point Likert scale based onNASATLX
model [19]with additional questions, with 1 being themost negative
experience and 7 the most positive. After all the trials, participants
evaluated their overall experience on the same 7-point Likert scale.
All survey questions are shown in Appendix D. After completing all
tasks, they engaged in a semi-structured interview, which explored
their thought processes during interaction with both task graph
and NL command, their perceptions of the interaction effort and
utility, and whether they understood and paid attention to cognitive
dependencies. Each phase took about 40 minutes, with the entire
process taking about 2 hours. Each participants received $12 per
hour and $2 for each personalized tasks as compensation4.

6.3 Tasks
We selected 10 representative tasks from the dataset collected dur-
ing the formative study, ensuring each type of semantic dependency
was covered by two tasks: one easy (with 6 or fewer demonstrated
steps) and one difficult (with more than 6 demonstrated steps). The
task list is detailed in Table 6.

6.4 Results
6.4.1 Success Rate and Time (RQ1, RQ2). Participants concluded
each trial either when satisfied with the automation results or upon
deeming the task impossible to complete. As shown in Table 7, the
average completion times were 5.1 minutes (𝜎=2.0) for TaskMind
and 15.3 minutes (𝜎=8.4) for Baseline LLM, with a statistically signif-
icant difference (p=0.0001<0.05) observed through a paired-samples
t-test. The step success rates were 95.3% for TaskMind and 78.0% for
4The study protocol was reviewed and approved by the university ethics review board.
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Table 7: Comparison of efficiency between TaskMind and the baseline LLM.

Task Complete Time (min) Modification Time (s) Number of Modifications
TaskMind 5.1 (𝜎=2.0) 102.5 (𝜎=38.0) 0.76 (𝜎=0.83)
Baseline 15.3 (𝜎=8.4) 23.5 (𝜎=10.3) 1.96 (𝜎=0.95)

Figure 8: The effectiveness of trials based on the number of
modifications to task graphs for TaskMind versus NL instruc-
tions for the baseline LLM. Since all participants performed
at least one NL addition, there is no ‘0 number of modifica-
tion’ data for the baseline LLM.

Baseline LLM. These results indicate that participants were able to
complete tasks more efficiently and reliably using TaskMind than
with the baseline. The efficiency of TaskMind mainly comes from
its improved success rate which lowers the need for further modi-
fications, and reduced execution time achieved by using the task
graph as a guide to skip non-generalizable parameter inference.

The study required TaskMind identifying a total of 61 instances of
semantic dependencies, where it achieved a precision of 76.5%, recall
of 79.6%, and an F1-score of 78.0%. The slightly lower performance
compared to the simulation study was likely due to participants
introducing additional and unintentional operations that impacted
the recognition of semantic dependencies, as evidenced by the
higher average number of demonstrated steps 9.6 compared to the
8.8 steps in the expert demonstrations for the pre-defined 10 tasks
during the simulation.

6.4.2 Modifications and Collaborations (RQ1, RQ2, RQ3). For each
trial, we recorded the total time participants spent making multi-
ple modifications in the interfaces. On average, they spent 102.5
seconds (𝜎=38.0) with 0.76 (𝜎=0.83) modifications on TaskMind’s
task graphs, compared to 23.5 seconds (𝜎=10.3) and 1.96 (𝜎=0.95)
modifications on Baseline LLM’s NL commands. When modifying
tasks graphs, participants mainly focused on correcting dependency
recognition errors, categorized into 4 types discussed in 5.1: adding
unrecognized (21.1%), correcting misinterpreted (7.9%), abstracting
overly-specific (31.6%), clarifying overly-abstract (26.3%). The re-
maining changes (13.2%) involved deleting incorrectly identified
dependencies. In contrast, NL command modifications primarily
involved creating and expanding commands to specify task goals.

Participants spent more time on modifying the task graph (RQ2,
RQ3). 7/20 participants mentioned that they needed extra time to

grasp the logic of operations and cognitive dependencies. P11 noted,
“It took more time to understand the meaning of the arrows (cognitive
dependencies)”, while P4 explained, “Most of the time was spent
on creating and verifying missing dependencies”. Additionally, we
observed that participants tended to carefully check each operation
when working with the task graph to validate the dependencies.
For example, P7 spent much time analyzing the dependencies in
T7 (Summarize annual total) which involve numerous steps and
inter-dependent operations.

Despite extra time required for task graphs, modifying task
graphs proved more effective than modifying NL commands with
a higher success rate on each number of modifications (RQ1), as
shown in Figure 8. Participants found it challenging to describe
the intent of specific operations using NL commands, whereas task
graphs provided more clarity (RQ3). P1 noted, “Task graphs pro-
vide opportunities to rewrite the logic between operations, enabling
targeted modifications to key steps of the task and their information
sources.” P12 added, “It’s easier for task graphs to correct automation
errors.” Meanwhile, when a task involved multiple dependencies, a
single NL command was insufficient for accurate description. For
example, facing Task 1 with 3 dependencies, P5 gradually modified
the NL command from a simple description to a detailed one 3
times—“search for the title, click on a website, locate the abstract
on the page, paste it into the adjacent cell, and write a summary
for the abstract”, until ultimately abandoning it.

6.4.3 Subjective Feedback (RQ3). We employed the Wilcoxon
signed-rank test to compare the two methods on different met-
rics of subject ratings, as shown in Figure 9. For qualitative data
from interviews, we used thematic analysis to identify key patterns
related to participants’ perceptions. There were no statistically sig-
nificant differences in mental demand (Z=51.0, p>0.05), physical
demand (Z=36.0, p>0.05), ease of learning (Z=12.5, p>0.05) and ease
of using (Z=16.0, p>0.05) between TaskMind and Baseline LLM.
However, 9/20 participants perceived that modifying the task graph
required more mental demand and effort, especially in logical think-
ing, while NL instructions were more convenient. As P9 mentioned,
“The task graph requires understanding each dependency and their
connections between operations, which is a bit hard to grasp.” Notably,
when dealing with simple tasks, 2/20 participants (P10 and P18) pre-
ferred the modification of NL instructions for the simplicity, as P10
expressed, “The task graph is relatively complex and requires editing
of details. If the task is simple, the advantages are not as noticeable.”

Despite the effort, TaskMind significantly outperformed Baseline
LLM in terms of performance (Z=12.0, p=0.0001<0.05), frustration
(Z=25.5, p=0.005<0.05), satisfaction (Z=15.0, p=0.0001<0.05), control-
lability (Z=17.0, p=0.0001<0.05), reliability (Z=30.0, p=0.0003<0.05)
and willingness to use (Z=6.0, p=0.03<0.05). Considering Task-
Mind’s effectiveness compared to the baseline LLM, participants
were willing to invest more time and effort in understanding the
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Figure 9: NASA-TLX and usability scores for each subscale with asterisks showing the statistically significant mean differences
on the Wilcoxon signed-rank test (*: p<0.05, **: p<0.01, ***: p<0.001). Crosses (x) represent mean values, and horizontal lines (—)
represent median values. For NASA-TLX (the first 6 scales), 7 indicates very low mental and physical demand, no time pressure,
good performance, minimal effort, and no frustration. For usability (the remaining scales), 7 is very positive.

task graph to achieve better utility. P1 expressed, “The task graph is
more reliable, and after weighing the options, I’m still more willing
to spend effort on modifying it.” Controllability also contributed to
users’ experience when interacting with TaskMind. Based on inter-
view feedback, the sense of control was driven by two main factors:
First, the specificity of granular modifications with effective feed-
back, as mentioned in Section 6.4.2. Second, the improved sense
of mutual-understanding when collaborating with the machine.
11/20 participants mentioned that the task graph provided a more
transparent way to verify the system’s understanding of the task.
As P7 noted, “The task graph is easier to understand, as the arrows
(cognitive dependencies) clearly show how the system processes my
requirements.” P8 mentioned, “The task graph’s clear structure al-
lows me to know whether the machine understands my requirements,
making me easier to give clear instructions and ensuring we are on
the same page.” This highlights the design need for a transparent,
controllable interface that allows users to make targeted changes
and instantly see results.

2/20 participants expressed concerns about the risks of flexible
automation with Baseline LLM, as it occasionally overwrote orig-
inal data row and deleted files, as P13 noted, “it’s a bit dangerous
when you hand over control of the computer to the automation tool.”
Concerns about execution efficiency were also raised, with 6/20
participants complaining that Baseline LLM was time-consuming.

6.4.4 Personalized Tasks (RQ4). The 20 personalized tasks pro-
vided by participants during the 2nd phase varied in difficulty, with
number of operations ranging from 3 to 30 (𝜇=9.8, 𝜎=7.4), and num-
ber of semantic dependencies ranging from 0 to 4 (𝜇=1.6, 𝜎=1.1).
These tasks included 6 related to file management, 9 to learning
and academic activities, and 5 to clerical data processing. Among
them, TaskMind successfully automated 15 out of 20 tasks (75.0%),
while the baseline LLM automated 4 out of 20 tasks (20.0%). The
F1-score for TaskMind in extracting semantic dependencies was
82.4%. In addition to the issue of incorrectly applying semantic de-
pendnecies discussed in 5.1.3, TaskMind also encountered failures
for two reasons. First, overly complex tasks increased the difficulty
of interpreting and modifying the task graph, such as P2’s attempt
at collecting various data from a medical paper, where she failed to
add unrecognized cognitive dependencies. Second, diverse opera-
tion paths led to automation failures, as seen in P11’s task to collect

citations fromwebsites with varied formats and access paths, where
the system failed due to its reliance on a fixed path demonstrated.

Participants believed that TaskMind could address their real-life
needs. 12/20 participants expressed that repetitive tasks are com-
mon in their current jobs, with data organizing and processing tasks
being the most frequently mentioned. For example, P15 noted, “I’m
currently interning at a company where we often do repetitive spread-
sheet work, like filtering data from one sheet and filling it into the
corresponding fields in another. Your tool would be helpful.” However,
5/20 participants felt that there are certain requirements TaskMind
cannot meet, including repetitive tasks with significant flexibility or
require decision-making. For example, P10 expressed his concern
that processing experimental data “is quite repetitive but requires
thinking and analysis, which an automation tool would handle less
effectively.” Additionally, 5/20 participants expressed interest in
TaskMind’s future improvements in interaction and broader appli-
cation across different computer interfaces, suggesting features like
“trying NL instructions first, with the option to modify the task graph
if results are unsatisfactory” (P11) and proactive task prediction
and recommendations after a few operations, without requiring
manual invocation (P4). Overall, the second phase underscored
TaskMind’s effectiveness in automating real-scenario tasks, while
also revealing limitations in handling intricate, flexible tasks or
those requiring decision-making, highlighting potential areas for
further improvement and expansion.

7 Discussion
7.1 Cognitive Dependency in Neuro-Symbolic

Task Automation Systems
Traditional PBD methods employ predefined task scripts to guide
the automation [7, 21, 27, 29, 30, 32, 37, 57], providing reliability but
lacking the flexibility to adapt to diverse contexts, closely resem-
bling a record-and-replay approach. Recent LLM-driven automation
methods generate operation sequences from NL commands, relying
on the pre-trained LLM’s internal knowledge of task operations
[11, 14, 20, 24, 60, 61]. This allows for flexible task execution but
leads to lower reliability and higher risks [61]. Neuro-symbolic
systems employ a hybrid model that combines both logical and
neural components [9, 45], integrating symbolic inference on task
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execution logic with semantic reasoning on user intents to enhance
both reliability and generalizability in task automation.

Recent neuro-symbolic automation systems model tasks from
various aspects including diverse program logics [45] to hierarchi-
cal task structure [28]. Upon existing work, TaskMind contributes
to adding a semantic layer to represent the cognitive dependencies
between operations, bridging the gap between observed operations
and the user’s underlying cognitive processes. The explicit notion
of cognitive dependencies in a task graph enriches the task rep-
resentation with additional semantic information, improving the
generalizability for tasks with multiple interrelated parameters.
The task graph is a hybrid representation of task knowledge, and
is both user-interpretable and machine-referenceable, facilitating
effective task consensus between humans and machines. We claim
that this approach can be extended to include various types of task
knowledge in the task graph, such as complex control logic and ex-
ception handling, providing scalability in collaborative automation
for more intricate tasks in the future.

7.2 Operation-Cognition Knowledge Base for
Personalized Task Modeling

Our simulation study without knowledge base reveals that while
LLMs possess a foundational understanding of human cognition,
they lack comprehensive knowledge about the cognitive processes
specific to GUI operations. This shortfall is likely due to the scant
discussion in human-generated corpora, a point P8 highlighted by
noting that people seldom reflect on their intentions behind oper-
ations. To bridge this gap, we established an operation-cognition
knowledge base through data collection, offering an overview of
cognitive processes involved in GUI operations, and a reference
for future researchers who seek to abstract operation and task
intentions as a task modeling solution.

In addition, the challenges in recognizing personalized and task-
specific dependencies led to our design of the hierarchical structure
of the knowledge base, consisting of five closedmain categories, sev-
eral open subcategories for further expansion, and a self-evolving
mechanism driven by LLM. The improvement in recognition af-
ter evolution highlighted TaskMind’s capacity to learn from user
feedback and abstract specific descriptions into generalized knowl-
edge. However, challenges still exist with complex dependencies
due to the limitation of the demonstration. For instance, the demon-
stration of conditional logic proved insufficient for capturing the
complete intent, as evidenced by a personal task from P7 who
aimed to “replace ‘1’ with ‘Male’ and ‘2’ with ‘Female”’, yet only
the modification for the first data row was demonstrated.

7.3 Collaboration Insights for PBD
The diversity of personalized task requirements further underscores
the importance of interaction in PBD to ensure alignment between
human and machine in understanding tasks. Our user study com-
pared two interactive interfaces: task graphs and NL instructions,
revealing an effort-controllability trade-off. We observed that NL
instructions are more accessible to non-programming users (P3, P9,
P5), intuitive to modify (P8, P9), but difficult to modify with speci-
ficity (P1) and appear opaque (P2, P10). Task graphs offer better
transparency, controllability and more reliability (P1, P2, P5, P10),

but are initially more challenging to learn (P13) and requiring a
more complex thought process to modify (P1, P8, P15). This trade-
off reflects the tension between ease of use and the level of control.
Existing work [49], which focuses on trust in automation agents,
also mentioned controllability, reliability and some related criteria
that influence human-machine collaboration in task automation.
We believe that exploring improved interaction methods for task
automation is essential for enhancing the effectiveness of such
collaborations.

8 Limitations and Future Work
Currently, TaskMind automates tasks in limited applications, cov-
ering a substantial range of repetitive tasks encountered in pro-
fessional and academic settings. However, user feedback indicated
a demand for expansion to more applications such as literature
management tools and alternative spreadsheet programs like WPS.

One limitation of TaskMind is that the rule-based element
grounding approach for fixed operations cannot handle dynam-
ically changing web structures. This challenge is beyond the scope
of our current work, but future efforts can explore how to ground
known elements, by generating flexible rules or using fast vision-
based approaches.

Another limitation is that the influence of cognitive dependen-
cies only affects the generalization of parameters. During the au-
tomation, the operation path remains fixed, which limits flexibility
when dealing with complex workflows such as multiple branches
or hierarchical sub-tasks. For example, this led to the failure of a
personalized task that involved collecting citations from web pages
with different operation paths. In the future, we will continue to
explore more generalized neuro-symbolic approaches by modeling
knowledge such as diverse and hierarchical workflows into the
task graph, integrating LLMs to grant flexibility to more types of
complex tasks.

Finally, taskMind operates on a PBD basis, requiring users to
manually demonstrate the entire operation process and define task
boundaries through explicit start and stop recording actions. Pre-
vious studies [7, 12] have tackled the challenge of identifying task
boundaries through rule-based methods. Future versions of Task-
Mind aim to transcend these limitations by implementing advanced
techniques for automatic and intelligent task segmentation, pro-
viding a more intuitive automation system by mining task graphs
from users’ natural usage.

9 Conclusion
We introduced TaskMind, an intelligent PBD system designed to
automate GUI tasks by recovering cognitive dependencies from
user demonstrations. Central to its design is a task graph and a com-
prehensive operation-cognition knowledge base developed from
an extensive formative study, which effectively models computer
tasks. TaskMind leverages this knowledge base, integrated with
LLMs, to identify and recover these dependencies autonomously.
Additionally, the user feedback for the task graph contributes to
the self-evolving of the system. This innovative approach marks a
significant advancement in intelligent task automation and paves
the way for future developments in the field.
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A The Prompt of Semantic Dependency
Extractor

system

You are a clever computer task analyzer. I will give
you a sequence of user computer operations with pa-
rameters, which includes Element type, Text type, etc.
You should first analyze the abstract and generalizable
goal of the task, and give the global parameter of the
task TASK_PARAM (If there are multiple, give the
first). Then, for each operation, you should (a) repeat
its type, (b) analyze the user’s intention of this opera-
tion, and why the user chose this element or text, (c)
determine if this operation is an operation with fixed
parameters, which means the parameter should not
change if the task will be executed in other context
with other parameters, (d) explain why the user select
this element or input this text, of which the reason
should be a causal relation of this operation’s param-
eters with other parameters of previous operations.
The relation should only be between Text or Element
types.
The relation should be in the following format:
y=SUBCATEGORY.MAINCATEGORY<ADDITIONAL
INSTRUCTION>(x). Here, y is the index of current
operation, x is the index of a previous operation,
MAINCATEGORY is the main category of the
relation, SUBCATEGORY is the sub-category of the
relation, and ADDITIONAL INSTRUCTION is a
description of the relation. The description should
be specific enough to be informative but abstract
enough to generalize to new context.

You must choose MAINCATEGORY from the follow-
ing options. Do NOT make up a MAINCATEGORY
by yourself! Here are all the main categories:
1.Information recall.
2.Information comprehension.
3.Information creation.
4.Logical reasoning.
5.Contextual selection.

You can choose SUBCATEGORY from the following
example options. If the SUBCATEGORY you need
doesn’t exist, you can create a new SUBCATEGORY.
Here are examples of the sub-categories:
1.1. Information recall: repeat. Select an ele-
ment or input something based on previously
same or similar information. Example: re-
peat.information_recall<select the element with
similar text>(x), repeat.information_recall<input the
same text>(x).
1.2. Information recall: polish text. Pol-
ish the text into specific style. Exam-
ple:y=polish_text.information_recall<use a more
formal tone>(x).

1.3. Information recall: format text. Keep the
original content intact while changing the
format, structure, or presentation. Example:
y=format_text.information_recall<replace suffix>(x),
y=format_text.information_recall<structure previous
data based on a specific format>(x).
2.1. Information comprehension: summarize. Under-
stand the information and give a summary. Exam-
ple:y=summarize.information_comprehension <sum-
marize into keywords>(x).
2.2. Information comprehension: derive
information. Understand the informa-
tion and derive some information. Exam-
ple:y=derive_information.information_comprehension
<derive the student id from>(x).
3.1. Information creation: generate. Generate
or expanding new content, instead of merely
adjusting the format of existing content. Ex-
ample:y=generate.information_creation<write
a short essay based on the keyword>(x),
y=generate.information_creation<write an ap-
plication for the post>(x).
4.1. Logical reasoning: calculate. Performing math-
ematical calculations on existing data. Example:
y=calculate.logical_reasoning<add two numbers>(x,
y).
4.2. Logical reasoning: evaluation. Ana-
lyzing existing data to produce a result,
comparison, or categorization. Example:
y=evaluation.logical_reasoning<compare
two strings and give the result>(x, y),
y=evaluation.logical_reasoning<categorizing
data based on certain criteria>(x, y).
5.1. Contextual selection: match element. Select the
element from the current screen based on some
criteria. Here, x can be equal to y, which means the
result comes from the current context. Example:
y=match_element.contextual_selection<find
the movie title on the current screen>(x),
y=match_element.contextual_selection<Select
the item with the lowest price>(x).
5.2. Contextual selection: match text. Select the
text from the current screen based on some crite-
ria. Here, x can be equal to y, which means the
result comes from the current context. Example:
y=extract_text.contextual_selection<extract the text
that matches a specific pattern>(x).

ATTENTION, here are some important rules you need
to follow:
1. Copy, Paste or other operations without Element
or Text parameter, will be fixed and not have relation
with other operations.
2.Do NOT make up any MAINCATEGORY.
3.If it’s an Element selection operation, you should
only look for the relation between current Element’s
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features with previous operation’s Text/Element pa-
rameter. If it’s a TextInput operation, you should only
look for the relation between current Text parameter
with previous operation’s Text/Element.
4. Usually, the index of x should be smaller or equal
than y, which means the parameter must come from
the previous parameters, or the current context.
5. An unfixed operation MUST have a relation.
6. Try your best to find the relation with previous
operations, avoiding x = y!

Now let’s do the task step by step, operation by opera-
tion. DO NOT skip any operations! DO NOT skip any
operations! Follow the output format of the example!

user

1. Click. Element=<Edit text="1.jpg" name="name"
desc="">.
2. Right click. Element=<Edit text="1.jpg"
name="name" desc="">.
3. Click. Element=<MenuItem text=""
name="rename(M)" desc="">.
4. Input text. Text="1(color printing).jpg". Ele-
ment=<Edit text="1.jpg" name="1.jpg" desc="">.
5. Press.

assistant

The abstract task goal is to rename the file. The global
parameter of the task, which is the target of the goal, is
the file to be renamed, and the first unfixed operation
is 1, so the first global parameter TASK_PARAM=1.
There are 5 operations and I must analyze each oper-
ation without skipping any of them.
1. Click. Element=<Edit text=""1.jpg"" name=""Name""
desc="""">. Operation 1: The user clicks this element
because it’s the file that the user wants to rename. The
file will be changed if the user want to rename other
files, so it’s unfixed. But this is the global parameter,
so there is no relation. Conclusion: unfixed.
2. RightClick. Element=<Edit text=""1.jpg""
name=""Name"" desc="""">. Operation 2: The
user right clicks this element because the user wants
to see the context menu of the same file. It’s unfixed.
Because current Element’s text feature ""1.jpg"" has
the same text with the Element (""1.jpg"") in operation
1, So the result is 2=repeat.information_recall<find
the same file>(1). Conclusion: unfixed.
3. Click. Element=<MenuItem text=""""
name=""Rename(M)"" desc="""">. Operation 3:
The user click this element because the user wants
to rename the file. This operation will no change
if the user wants to rename other file, so it’s fixed.
Conclusion: fixed.
4. TextInput. Text=""1(color printing).jpg"". Ele-
ment=<Edit text=""1.jpg"" name=""1.jpg"" desc="""">.
Operation 4: The user inputs the new name of the
file. The text will be changed if the file changed,

so it’s unfixed. Because current Text ""1(color print-
ing).jpg"" is a formatted string to previous text
""1.jpg"" in Operation 1, So the result is 4=for-
mat_text.information_recall<add the specific suffix
""(color printing)"" to the filename>(1). Conclusion:
unfixed.
5. Enter. Operation 5: The user confirms after renam-
ing the file. This operation has no parameter, so it’s
fixed. Conclusion: fixed.

So all the results are: 2=Ob-
ject_recognition.match_element_text<find the
same file>(1). 4=text_processing.edit_text<insert
string "(color printing)" before suffix>(1).

B The Prompt of Reflection Module
system

You are a computer operation analysis assistant. In a
recent analysis task you completed, there were errors
with the answer you provided, and the user made
corrections to it. Now, I will present the analysis task,
the error in your answer, and the user’s correction.
You need to:
1.Reflect on why your previous answer was incorrect.
Examine the specifics of the error and the root cause
behind it.
2.If there is a RULE in RULE-DATABASE that causes
your answer to be incorrect, modify that RULE.
3.Reflect what areas can you improve upon for the
next time you do this task. (For example, paying more
attention to specific aspects, etc.) Then summarize
it into a new RULE. Then you should generalized
the new RULE, so that the new RULE can be applied
correctly to many tasks and cases.
4.Reflect whether modifying the name or example of
a SUBCATEGORY can help you do the task better
and fix the error. However, the new SUBCATEGORY
must cover the range of the old one. If you can’t en-
sure that, add a SUBCATEGORY instead of modifying!
For instance, you must not modify SUBCATEGORY
"compose text" to "write an email on", because "write
an email on" does not cover the complete range of
"compose text". Then generalize the name of the SUB-
CATEGORY.
5.Reflect whether the user feedback belongs to a new
SUBCATEGORY that better discribes this dependency.
If true, add the SUBCATEGORY (Remember the SUB-
CATEGORY should belong to an existing MAINCAT-
EGORY.) Then generalize the SUBCATEGORY based
on the following rules: The name of a SUBCATEGORY
must be a general description of a class of dependen-
cies. The name of a SUBCATEGORY should not be
task-specific, it should cover many similar tasks and
examples. For instance, "write an email on" can’t be
the name of a SUBCATEGORY because it can only
cover write-email tasks. However, "write text based
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on" can be a SUBCATEGORY because it can also cover
write-speech tasks, write-letter tasks, etc..
6.Based on your reflection above, give suggestions on
how to prevent errors in completing this task next
time. You can choose one or more options from the
following. Here are all the options:

A. Modify a RULE in RULE-DATABASE. Remember
to generalize the new RULE.
B. Add a RULE to RULE-DATABASE. Remember to
generalize the new RULE.
C. Modify a SUBCATEGORY. Remember to general-
ize the new SUBCATEGORY. Then modify the origin
examples of the SUBCATEGORY.
D. Add a SUBCATEGORY. Remember to generalize
the new SUBCATEGORY. Then give two different ex-
amples of the new SUBCATEGORY that best explains
it.
E. None of the above.

Your answer should be in the following format(you
can change the words inside {}):
1.why my previous answer was incorrect:{answer}
2.modify a RULE in RULE-DATABASE:{assessment
and analyse}
generalize the modified RULE:{analyse and RULE gen-
eralization}
3.add a RULE to RULE-DATABASE:{assessment and
analyse}
generalize the new RULE:{analyse and RULE general-
ization}
4.modify a SUBCATEGORY:{assessment and analyse}
generalize the name of the modified SUBCATE-
GORY:{analyse and name generalization}
5.add a SUBCATEGORY:{assessment and analyse}
generalize the name of the new SUBCATE-
GORY:{analyse and name generalization}
6.suggestion(only output the chosen suggestion):

A. RULE-DATABASE.modify({number
of the origin RULE},{content of the origin
RULE}).content({content of the RULE after modifica-
tion}).[endA]

B. RULE-DATABASE.add({the RULE you want to
add}).[endB]

C. SUBCATEGORY.modify({initial name of MAIN-
CATEGORY}. {initial name of SUBCATEGORY})
.name ({name of MAINCATEGORY}.{name of SUB-
CATEGORY after modification}) .example1({example
of SUBCATEGORY, in format of y= MAINCATE-
GORY. SUBCATEGORY <ADDITIONAL INSTRUC-
TION>(x)}) .example2( {example of SUBCATEGORY,
in format of y= MAINCATEGORY. SUBCATEGORY
<ADDITIONAL INSTRUCTION>(x)}).[endC]

D. SUBCATEGORY.add({name of MAINCAT-
EGORY}. {name of SUBCATEGORY you want
to add}).example1 ({example of SUBCATEGORY,

in format of y= MAINCATEGORY. SUBCATE-
GORY <ADDITIONAL INSTRUCTION>(x)}) .ex-
ample2 ({example of SUBCATEGORY, in format
of y=MAINCATEGORY. SUBCATEGORY <ADDI-
TIONAL INSTRUCTION>(x)}) .[endD]

E. NONE.[endE]

C The Prompt for the baseline LLM
system

– Goal –
You are a task automation agent. You should gener-
ate the next operation based on the automation in-
struction, the already automated operations and the
current screen information, referring to the demon-
strated operation sequence. You should first analyze
the goal of the task , and then analyze the intent of this
operation before giving the answer. Attention: When
automating tasks, make sure your operations are the
same as the demonstrated ones, with only the parame-
ters changing. For repetitive tasks, the demonstration
is the first iteration, and you should begin from the
second iteration onward. Each iteration should follow
the same operations as the demonstration. You should
output the operation along with its parameters. There
are multiple types of parameters: Text, Element, Url,
Key andWindow. For parameters of the Element type,
you only need to select and output the corresponding
ID as a LIST from the current screen elements. For the
Window type, you only need to select and output the
ID from the available windows. If the task is complete,
use “End” operation to terminate the automation.

– Available Operations with Parameter types –
Click(Element), TextInput(Element, Text),
Copy(Element, Text), Paste(Element, Text),
Save(), WindowOpen(Element), Window-
Close(), MiddleClick(), DoubleClick(Element),
RightClick(Element), Enter(), FunctionKey(Element,
Keydata), MultiSelect(Element, Element),
Drag(Element, Element?), Move(Element, Element),
NewTab(), UpdateTab(Url), CloseTab(), Select-
Text(Element, Text), WindowFocusChange(Window),
End()

– Example 1 –
Input:
Available elements on the current screen:
<DataItem id=""0"" text=""2024"" name=""A2"">
<DataItem id=""1"" text=""2025"" name=""A3"">
<DataItem id=""2"" text=""2026"" name=""A4"">
. . .
Demonstrated operation sequence:
1. Type: WindowFocusChange, Window: Excel.
2. Type: Click, Element: <DataItem text=""2024""
name=""A2"">.
3. Type: Copy,
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Automation instruction:
I want to copy the content of each dataitem of this
column.
This task is repetitive. The first iteration is already
demonstrated. At this iteration, operation 2’s parame-
ters is: <DataItem text=""2025"" name=""A3"">
Already automated operations:
1. Type: WindowFocusChange, Window: Excel.
The next automated operation should be Click. You
MUST provide the most likely parameters, even if the
information is incomplete.
Output:
This task is to copy the content of all the cells. The
next step is corresponded to operation 2 in the demon-
strated sequence. I should click the target of this iter-
ation, so the next step is:
Type: Click, Element: id=[1]

– Example 2 –
Input:
Available elements on the current screen:
<DIV id=""0"" text="""" name=""input"">
. . .
Demonstrated operation sequence:
1. Type: Click, Element: <Div text=""""
name=""input"">.
2. Type: TextInput, Text: ""Beijing is a beautiful city"",
Element: <Div text="""" name=""input"">.
Automation instruction:
Write a introduction about Shanghai.
Already automated operations:
1. Type: Click, Element: <Div text=""""
name=""input"">.
The next automated operation should be TextInput.
You MUST provide the most likely parameters, even
if the information is incomplete.
Output:
This task is to write an introduction. The next step is
corresponded to operation 2 in the demonstrated se-
quence. I should write an introduction about “Shang-
hai”, so the next step is:
Type: TextInput, Text: ""Shanghai is a bustling city,
known as the Pearl of the Orient."", Element: id=[0]

– Example format of other outputs –
Type: WindowFocusChange, Window: id=[0]
Type: MultiSelect, Element: id=[1,2]
Type: Move, Element: id=[1,2]
Type: End
...

user

Available elements on the current screen: ...
Available windows for WindowFocusChange on the
current screen: ...
Demonstrated operation sequence: ...
Already automated operations: ...

Automation instruction: ...

The next automated operation should be .... YouMUST
provide the most likely parameters, even if the infor-
mation is incomplete.

D Surveys of User Study
D.1 Survey of Workload and Usability

• How mentally demanding was the task?
• How physically demanding was the task?
• How hurried or rushed was the pace of the task?
• How successful were you in accomplishing the task?
• How hard did you have to work to accomplish your level of
performance?

• How frustrated did you feel during the task?
• How satisfied were you with the automation result?
• To what extend do you think the system understand your
task?

D.2 Survey of User Experience
• How easy was it to learn how to use the system?
• How easy was it to automate the task using the system?
• How easy was it to modify the task and interact with the
system?

• To what extend do you think the system is reliable?
• To what extend do you think the system is controllable?
• How likely are you to use this system in the real life?

E The Dataset of 39 Example Tasks
The example tasks are listed in Table 8 and 9. It should be noted that
the column ’Count’ stands for the number of Structure Dependency
in a single task.

F The Set of 21 Common Computer Operations
See Table 10.
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Table 8: The Dataset of 39 Example Tasks (Part 1)

Task Name Task Description Semantic Dependency List Count

1 Paper Abstract
Search for the paper, paste the abstract,
then translate and summarize the main
points.

1.Object_recognition.match_element_text<find the search result most related to>
2.text_comprehension.extract_information<select abstract of paper>
3.text_comprehension.summarize<summarize in one sentence>

4

2 Extract Birthday
from ID Card-1

Extract the birthday and fill in the new
column according to the ID number in
the form (first click the ID number and
then enter the birthday).

1.text_comprehension.extract_information<extract birthday from ID number> 3

3 Extract Birthday
from ID Card-2

Extract the birthday and fill in the new
column according to the ID number in
the form (directly enter the birthday).

1.text_processing.edit_text<extract date of birth from ID number> 1

4 Edit Formatted Data
Form a format string to fill in a new
column based on the data in multiple
columns of the table (directly enter in
the new column without instruction).

1.text_processing.edit_text<format text according to template> 2

5 Generate Birthday
Card

Generate or modify the birthday card ac-
cording to excel sheet, which contains
name and date information.

1.text_creation.compose_text<create a greeting message with the name and date from
previous actions> 4

6 Character Proof-
reading

Select and copy the cell text in the ex-
cel sheet to the browser interface, click
proofreading, and fill in the new column
with results and identified problems.

1.logical_reasoning.compare_results<compare and output "identify" if same>
2.text_comprehension.repeat<input the same text>

6

7 Data Summation
and Aggregation

Sum a column of data, remember the re-
sult and switch to sheet1 to input the
result.

1.Object_recognition.match_element_properties<find the same year>
2.text_comprehension.repeat<input the same text>

4

8 Batch Rename .md
Files Rename multiple files from 1.txt to 1.md. 1.text_processing.edit_text<replace “.txt” with “.md” and keep the number same> 1

9 Batch Rename Paper Rename a list of files to ’paper1’, ’paper2’,
’paper3’, etc. 1.text_processing.edit_text<replace text with "paper" and iteration number> 1

10 Batch Rename Files
With file ’xxx-1’ ready, copy more files
and rename the new files to ’xxx-2’, ’xxx-
3’, etc.

1.text_processing.edit_text<replace the number after the dash with iteration number> 1

11 Merge Folders
Click into sub-folders in folder A, copy
the mp4 file, and paste it into the corre-
sponding sub-folder in folder B.

1.Object_recognition.match_element_text<find the file with similar text> 1

12 Batch File Compres-
sion

Compress multiple folders separately
and delete all the folders before compres-
sion.

None. 1

13 Batch File Decom-
pression

Decompress multiple compressed files
separately and delete all files before de-
compression.

None. 1

14 Batch Rename by
Specific Title

Rename each file in a folder to
"xx(color_printing)". 1.text_processing.edit_text<add string "(color_printing)" to the text> 1

15 Fill in Web Forms Copy the contents of excel and fill them
out in turn in the web form. 1.Object_recognition.match_element_properties<similar column header> 0

16 Keyword Searching
Type keywords in the document, switch
to the browser to search for keywords,
and summarize the content to the docu-
ment after browsing.

1.Object_recognition.match_element_text<find the result most related to>
2.text_comprehension.repeat<input the same text>
3.text_comprehension.summarize<summarize in one sentence>
4.text_comprehension.extract_information<extract detailed description from>

1

17 PPT Remark Trans-
lation

Translate the text on the PowerPoint into
English and fill in the remarks column. 1.text_processing.translate<translate into Chinese> 1

18
Make PPT in
Batches according
to Word

Make PowerPoint in batches according
to Word, and make one page for each
scenic spot in Word.

1.Object_recognition.match_element_text<find the picture with the same name>
2.text_comprehension.extract_information<extract the keyword from>

2

19 Subject Fee Sum-
mary

Copy and paste the corresponding
columns "Name", "ID number" and "Fee"
into the corresponding column of the
master table.

1.Object_recognition.match_element_text<find the column with similar text> 3

20 Rename Download
Files

Click a link in the web page, download
the files on a new page and name each
file the name shown on the link.

1.Object_recognition.match_element_text<find the same file>
2.text_processing.edit_text<remove string "25-" and "(2023)" from>

1

21 Rename Files with
Suffix "fix"

Add -fix to the filename of all the images
in a folder. 1.text_processing.edit_text<insert string "-fix" before suffix> 1

22 Expenditure Detail
Form

Fill in the different items in the corre-
sponding expense table according to the
schedule.

1.Object_recognition.match_element_properties<extract property information>
2.logical_reasoning.extract_information<extract how to calculate the total fee>

8

23 E-mail Writing Enter the subject of the email first, and
then write the message. 1.text_creation.based_on_previous_input<write an email on the subject> 0
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Table 9: The Dataset of 39 Example Tasks (Part 2)

Task Name Task Description Semantic Dependency List Count

24 Extract a List by
Folder Names

Click on the folder and enter the name
of all the folders in the root directory in
word.

1.text_comprehension.repeat<input the same text> 1

25 Add Caption to Pic-
tures

Add a common caption to two illustra-
tions that already have a caption.

1.Object_recognition.match_element_text<find the same image>
2.text_comprehension.summarize<summarize in one sentence>

0

26 Write Thoughts ac-
cording to PPT

Expand summary and thoughts to word
document according to PowerPoint. 1.text_creation.reflect_and_summarize<summarize the text inside> 2

27 Write a Speech ac-
cording to PPT

Write the presentation toword document
according to PowerPoint. 1.text_creation.compose_presentation_draft<summarize in one paragraph> 2

28 File Movement Move all files with names like
"xx(color_printing) "into a folder. None. 1

29 Automatic
Numbering-1 Auto-number each line with [1][2][3]. 1.text_processing.edit_text<add iteration number before the original text> 2

30 Automatic
Numbering-2

Change the dot number from 0.1.2. to
1.2.3. 1.text_processing.edit_text<replace the reference number with iteration number> 2

31 Modify Title Format
in Batches

Use the same format for a list of the same
type of text, with a space between the
number and the text.

1.text_processing.edit_text<insert a space after "Level"> 2

32 Bank Card Number
Conversion

Replace the four asterisks in the bank
card number column with the number
1000.

1.text_processing.edit_text<replace "****" with "1000"> 2

33 PPT Text Polishing Polish the English text in the PowerPoint
text box. 1.text_processing.extend_parameter<summarize in one sentence> 2

34 Learning Content
Recording

Put the title of the video being played in
the browser into the Today plan in word
document.

1.text_creation.compose_text<write a sentence based on the video title> 1

35 Sentiment Analysis Mark whether a movie review is positive
or negative. 1.logical_reasoning.classify<judge if the statement is positive or negative> 2

36
Calculate the
Amount of Materi-
als Purchased

For a material in a row of the form, fill
in the total amount calculation formula,
and calculate the total amount.

1.text_creation.compose_text<combine the values in the "other_properties">
2.logical_reasoning.calculate<calculate the result of the formula>

1

37 Answer Chinese
Self-test Questions Select a question and enter the answer. 1.logical_reasoning.answer_question<provide the answer to the question> 2

38 Take Multiple
Choice Questions

Select a question and enter one of the
four options. 1.logical_reasoning.answer_question<select the most correct answer from the options> 2

39 Calculate Rectangu-
lar Area

Calculate the area based on the length
and width of the yard. 1.logical_reasoning.calculate<calculate the product of the numbers> 2

Table 10: The Set of 21 Common Computer Operations

Operation Parameter Types Description
1 Click element Left mouse click
2 TextInput element, text Input text
3 Copy element, text Copy, including keyboard Ctrl+C and mouse click on the copy button
4 Paste element, text Paste, same rule as above
5 Cut element, text Cut, same rule as above
6 Save / Save, same rule as above
7 WindowOpen element Open application window
8 WindowClose / Close application window
9 MiddleClick / Page scroll
10 DoubleClick element Double-click with an interval less than a threshold
11 RightClick element Right-click to invoke a menu
12 Enter / Enter key
13 FunctionKey element, keydata Shortcut keys
14 MultiSelect element1, element2 Drag to multi-select, such as Excel cells
15 Drag element1, element2 Drag a UI element
16 Move element1, element2 Move files
17 NewTab / Open a new browser tab
18 UpdateTab url Navigate to a URL
19 CloseTab / Close a browser tab
20 WindowSwitch window Switch to another window
21 SelectText text, element Drag to select text on a page
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